Microbes drive metabolism, community diversity, and interactions in response to microplastic-induced nutrient imbalance

The impact of conventional and biodegradable microplastics on soil nutrients (carbon and nitrogen) has been widely examined, and the alteration of nutrient conditions further influences microbial biosynthesis processes. Nonetheless, the influence of microplastic-induced nutrient imbalances on soil m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-06, Vol.877, p.162885-162885, Article 162885
Hauptverfasser: Shi, Jia, Wang, Zi, Peng, Yumei, Zhang, Ziyun, Fan, Zhongmin, Wang, Jie, Wang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The impact of conventional and biodegradable microplastics on soil nutrients (carbon and nitrogen) has been widely examined, and the alteration of nutrient conditions further influences microbial biosynthesis processes. Nonetheless, the influence of microplastic-induced nutrient imbalances on soil microorganisms (from metabolism to community interactions) is still not well understood. We hypothesized that conventional and biodegradable microplastic could alter soil nutrients and microbial processes. To fill this knowledge gap, we conducted soil microcosms with polyethylene (PE, new and aged) and polylactic acid (PLA, new and aged) microplastics to evaluate their effects on the soil enzymatic stoichiometry, co-occurrence interactions, and success patterns of soil bacterial communities. New and aged PLA induced soil N immobilization, which decreased soil mineral N by 91–141 %. The biodegradation of PLA led to a higher bioavailable C and wider bioavailable C:N ratio, which further filtered out specific microbial species. Both new and aged PLA had a higher abundance of copiotrophic members (Proteobacteria, 35–51 % in PLA, 26–34 % in CK/PE treatments) and rrn copy number. The addition of PLA resulted in a lower alpha diversity and reduced network complexity. Conversely, because of the chemically stable hydrocarbon structure of PE polymers, the new and aged PE microplastics had a minor effect on soil mineral N, bacterial community composition, and network complexity, but led to microbial C limitation. Collectively, all microplastics increased soil C-, N-, and P -acquiring enzyme activities and reduced the number of keystone species and the robustness of the co-occurrence network. The PLA treatment enhanced nitrogen fixation and ureolysis, whereas the PE treatment increased the degradation of recalcitrant carbon. Overall, the alteration of soil nutrient conditions by microplastics affected the microbial metabolism and community interactions, although the effects of PE and PLA microplastics were distinct. [Display omitted] •The effects of two MPs on microbial metabolism and community were estimated.•PLA microplastics increased soil C:N ratio.•PLA decreased the network complexity and the function of recalcitrant C degradation.•All MPs decreased the stability and number of keystone species in bacterial networks.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.162885