Improved performance of metal-organic frameworks loaded cellulose acetate based film for packaging application
Bio-nanocomposite-based packaging materials have gained significance due to their possible applications in food packaging. Cellulose acetate is a biopolymer obtained by acetylation of cellulose and has characteristics such as biocompatibility, biodegradability and high transparency. Introducing iron...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2023-05, Vol.237, p.124041-124041, Article 124041 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bio-nanocomposite-based packaging materials have gained significance due to their possible applications in food packaging. Cellulose acetate is a biopolymer obtained by acetylation of cellulose and has characteristics such as biocompatibility, biodegradability and high transparency. Introducing iron-based metal-organic frameworks offer good mechanical strength, unique surface area and both chemical and thermally stability, making them favourable as supporting materials in fabricating polymer-based packaging materials. Among them, Fe- (Material Institute Lavoisier) MIL-88A is an iron-based nontoxic metal-organic framework, integrated with cellulose acetate and spinach extract was added to the prepared material in different compositions and cast as film. The Spinach loaded, Fe- (Material Institute Lavoisier) MIL-88A integrated cellulose acetate film significantly enhanced the tensile strength, water vapour permeability, and anti-microbial activity. The prepared film is then characterized using a scanning electron microscope (SEM), Fourier transforms infrared spectrometer (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Further, studies on mechanical properties as well as degradation tests and real-time applications of the prepared films were carried out.
•Cellulose acetate-based metal organic framework loaded film was fabricated.•Incorporation of Allmania nodiflora was effective against bacteria and pathogens.•Modified films showed good mechanical property and biodegradability.•The prepared have significant potential for active food packaging applications. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2023.124041 |