Transition from susceptible-infected to susceptible-infected-recovered dynamics in a susceptible-cleric-zombie-recovered active matter model
The susceptible-infected (SI) and susceptible-infected-recovered (SIR) models provide two distinct representations of epidemic evolution, distinguished by whether or not the number of susceptibles always drops to zero at long times. Here we introduce a new active matter epidemic model, the "sus...
Gespeichert in:
Veröffentlicht in: | Physical review. E 2023-02, Vol.107 (2-1), p.024604-024604, Article 024604 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The susceptible-infected (SI) and susceptible-infected-recovered (SIR) models provide two distinct representations of epidemic evolution, distinguished by whether or not the number of susceptibles always drops to zero at long times. Here we introduce a new active matter epidemic model, the "susceptible-cleric-zombie-recovered" (SCZR) model, in which spontaneous recovery is absent but zombies can recover with probability γ via interaction with a cleric. Upon colliding with a zombie, both susceptibles and clerics enter the zombie state with probability β and α, respectively. By changing the initial fraction of clerics or their healing ability rate γ, we can tune the SCZR model between SI dynamics, in which no susceptibles or clerics remain at long times, and SIR dynamics, in which a finite number of clerics and susceptibles survive at long times. The model is relevant to certain real world diseases such as HIV where spontaneous recovery is impossible but where medical interventions by a limited number of caregivers can reduce or eliminate the spread of infection. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.107.024604 |