An Information-Theoretic Entropy Metric for Assessing Multi-Objective Optimization Solution Set Quality

An entropy-based metric is presented that can be used for assessing the quality of a solution set as obtained from multi-objective optimization techniques. This metric quantifies the “goodness” of a set of solutions in terms of distribution quality over the Pareto frontier. The metric can be used to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mechanical design (1990) 2003-12, Vol.125 (4), p.655-663
Hauptverfasser: Farhang-Mehr, Ali, Azarm, Shapour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An entropy-based metric is presented that can be used for assessing the quality of a solution set as obtained from multi-objective optimization techniques. This metric quantifies the “goodness” of a set of solutions in terms of distribution quality over the Pareto frontier. The metric can be used to compare the performance of different multi-objective optimization techniques. In particular, the metric can be used in analysis of multi-objective evolutionary algorithms, wherein the capabilities of such techniques to produce and maintain diversity among different solution points are desired to be compared on a quantitative basis. An engineering test example, the multi-objective design optimization of a speed-reducer, is provided to demonstrate an application of the proposed entropy metric.
ISSN:1050-0472
1528-9001
DOI:10.1115/1.1623186