Finite element analysis of calibration factors for the modified incremental strain method

To modify the incremental strain method used to evaluate non-uniform residual stress, a finite element analysis (FEA) of the reference model used to describe a hole-drilling test was conducted. The calibration factors for the x and y directions were obtained from the analysis and then their differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of strain analysis for engineering design 2003-01, Vol.38 (1), p.45-51
Hauptverfasser: Hwang, B-W, Suh, C-M, Kim, S-H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To modify the incremental strain method used to evaluate non-uniform residual stress, a finite element analysis (FEA) of the reference model used to describe a hole-drilling test was conducted. The calibration factors for the x and y directions were obtained from the analysis and then their differences were compared under various loading conditions. A hole-drilling test using a steel plate as the reference specimen was introduced, and under the pure bending load, strain relaxation was measured at each hole-drilling step to determine the calibration factors. Although the calibration factors in the x and y directions varied with the boundary conditions used in the FEA, their differences were reduced to zero for all depths when the prescribed loads as the boundary conditions in the x and y directions became the same. In addition, it was analytically and experimentally confirmed that the calibration factors did not vary with the direction. Accordingly, by making the calibration factors equal in the x and y directions in the modified equation for the incremental strain method, no singularity is produced in the stress calculations.
ISSN:0309-3247
2041-3130
DOI:10.1243/030932403762671881