Fatigue life and crack path predictions in generic 2D structural components
This paper proposes a reliable and cost-effective two-phase methodology to predict crack propagation life in generic two-dimensional (2D) structural components. First, the usually curved fatigue crack path and its stress-intensity factors are calculated at small crack increments in a specialized fin...
Gespeichert in:
Veröffentlicht in: | Engineering fracture mechanics 2003-07, Vol.70 (10), p.1259-1279 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper proposes a reliable and cost-effective two-phase methodology to predict crack propagation life in generic two-dimensional (2D) structural components. First, the usually curved fatigue crack path and its stress-intensity factors are calculated at small crack increments in a specialized finite-element software, using automatic remeshing algorithms, special crack tip elements and appropriate crack increment criteria. Then, the computed stress-intensity factors are transferred to a powerful general-purpose fatigue-design program, which has been designed to predict both initiation and propagation fatigue lives by means of classical design methods. Particularly, its crack propagation module accepts any
K
I expression and any crack growth rate model, considering sequence effects such as overload-induced crack retardation to deal with 1D and 2D crack propagation under variable amplitude loading. Non-trivial application examples compare the numerical simulation results with those measured in physical experiments. |
---|---|
ISSN: | 0013-7944 1873-7315 |
DOI: | 10.1016/S0013-7944(02)00099-1 |