Formation of Ultra-Fine Grained SUS316L Steels by Ball-Milling and their Mechanical Properties after Neutron Irradiation

In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0mass%TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2003-01, Vol.426-432, p.1065-1070
Hauptverfasser: Zheng, Y.J., Yamasaki, Tohru, Fukami, Takeshi, Mitamura, Tohru, Terasawa, Mititaka
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0mass%TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000DGC, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 1023 n/m2 and 1.14 x 1024 n/m2. The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50*mm.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.426-432.1065