Endometrial Thermal Balloon Ablation Using a High Temperature, Pulsed System: A Mathematical Model

A new endometrial thermal balloon ablation treatment for menorrhagia is modeled mathematically to predict its efficacy and safety. A device preheats a fluid to 173°C within a reservoir external to the uterus, and then pulses this fluid without further heating between the reservoir and the balloon fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2003-12, Vol.125 (6), p.841-851
Hauptverfasser: Reinders, Daniel M, Baldwin, Susan A, Bert, Joel L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new endometrial thermal balloon ablation treatment for menorrhagia is modeled mathematically to predict its efficacy and safety. A device preheats a fluid to 173°C within a reservoir external to the uterus, and then pulses this fluid without further heating between the reservoir and the balloon for 2.1 min of treatment time. The model predicted this treatment to result in consistent immediate tissue death (coagulation) depths of 3.4±0.1 mm for uterine cavities of 7 to 26 mL, and that eventual necrosis (tissue death that would occur 1–5 days post burn) may occur to depths of 6.5±0.2 mm. Whereas, burn depths varied with uterine cavity volume when a low temperature treatment (constant 75°C for 15 min) was modeled (2.3–2.9 mm and 6.8–8.2 mm, for immediate tissue death and eventual necrosis respectively). Similarly, the high temperature, pulsed treatment was less sensitive to blood perfusion rate than the low temperature treatment. Predicted eventual necrosis depth was 1.5 mm less for the high temperature, pulsed treatment than that predicted for a low temperature treatment (constant 87°C for 7 min) for the same immediate tissue death depth (3.5 mm), indicating that the new high temperature treatment may result in less damage to non targeted tissues.
ISSN:0148-0731
1528-8951
DOI:10.1115/1.1634279