Effect of Temperature on Thermal Properties of High-Strength Concrete
For use in fire resistance calculations, the relevant thermal properties of high-strength concrete (HSC) were determined as a function of temperature. These properties included the thermal conductivity, specific heat, thermal expansion, and mass loss of plain and steel fibre-reinforced concrete made...
Gespeichert in:
Veröffentlicht in: | Journal of materials in civil engineering 2003-04, Vol.15 (2), p.101-107 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For use in fire resistance calculations, the relevant thermal properties of high-strength concrete (HSC) were determined as a function of temperature. These properties included the thermal conductivity, specific heat, thermal expansion, and mass loss of plain and steel fibre-reinforced concrete made of siliceous and carbonate aggregate. The thermal properties are presented in equations that express the values of these properties as a function of temperature in the temperature range between 0 and 1,000°C. The effect of temperature on thermal conductivity, thermal expansion, specific heat, and mass loss of HSC is discussed. Test data indicate that the type of aggregate has a significant influence on the thermal properties of HSC, while the presence of steel fiber reinforcement has very little influence on the thermal properties of HSC. |
---|---|
ISSN: | 0899-1561 1943-5533 |
DOI: | 10.1061/(ASCE)0899-1561(2003)15:2(101) |