Ionic Conductivity of PEMFC Electrodes: Effect of Nafion Loading [proton exchange membrane fuel cell]

The effect of Nation loading in the cathode catalyst layer of proton exchange membrane fuel cell (PEMFC) electrodes was studied by impedance spectroscopy, cyclic voltammetry, and polarization experiments. Catalyst utilization, determined by cyclic voltammetry, peaked at 76% for a Nafion loading of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Electrochemical Society 2003-11, Vol.150 (11), p.C745-C752
Hauptverfasser: Li, G, Pickup, P G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of Nation loading in the cathode catalyst layer of proton exchange membrane fuel cell (PEMFC) electrodes was studied by impedance spectroscopy, cyclic voltammetry, and polarization experiments. Catalyst utilization, determined by cyclic voltammetry, peaked at 76% for a Nafion loading of ca. 30 mass %, and this coincides with the optimum performance obtained in H(2) /O(2)2 fuel cells. However, the small range of utilizations observed (55-76%) cannot explain the wide range of performances. The impedance results show that the ionic conductivity of the cathode increased greatly with increasing Nafion content, and this is the main factor responsible for the increase in performance up to 30% Nafion. The loss of performance at higher Nafion loadings must have been due to an increasing oxygen transport resistance, because the electronic resistance did not increase significantly. In fact, the highest electronic resistances were observed at low Nafion loadings, indicating that Nafion played a significant role as a binder.
ISSN:0013-4651
DOI:10.1149/1.1611493