Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices

The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2023-03, Vol.17 (6), p.5935-5942
Hauptverfasser: Ahn, Junseong, Gu, Jimin, Jeong, Yongrok, Ha, Ji-Hwan, Ko, Jiwoo, Kang, Byeongmin, Hwang, Soon Hyoung, Park, Jaeho, Jeon, Sohee, Kim, Hwi, Jeong, Jun-Ho, Park, Inkyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5942
container_issue 6
container_start_page 5935
container_title ACS nano
container_volume 17
creator Ahn, Junseong
Gu, Jimin
Jeong, Yongrok
Ha, Ji-Hwan
Ko, Jiwoo
Kang, Byeongmin
Hwang, Soon Hyoung
Park, Jaeho
Jeon, Sohee
Kim, Hwi
Jeong, Jun-Ho
Park, Inkyu
description The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.
doi_str_mv 10.1021/acsnano.3c00025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2786813247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786813247</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-7306fd8b9a39dfb174fa33d040876863fb62b91f6ea5e12fd5336e7365aa8e3f3</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRbK2evUmOgqTdzTSbxJtUq0JR0Arelk0y26Yku3U3Efz3bmnszdMMzPce8x4hl4yOGY3YRBZOS23GUFBKo_iIDFkGPKQp_zw-7DEbkDPnNpTGSZrwUzIAnjGesmxI5i9e3lqpnUIbGh0u15Veudtgbk0TvFWrqgxaE7y3FttiLfMag51iuzat0VUR3ON3VaA7JydK1g4v-jkiH_OH5ewpXLw-Ps_uFqEEgDZMgHJVpnkmIStVzpKp8oeSTqn_K-Wgch7lGVMcZYwsUmUMwDEBHkuZIigYkeu979aarw5dK5rKFVjXUqPpnIiS1OeCaJp4dLJHC2ucs6jE1laNtD-CUbErT_Tlib48r7jqzbu8wfLA_7XlgZs94JViYzqrfdZ_7X4B1o16Vw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786813247</pqid></control><display><type>article</type><title>Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices</title><source>ACS Publications</source><creator>Ahn, Junseong ; Gu, Jimin ; Jeong, Yongrok ; Ha, Ji-Hwan ; Ko, Jiwoo ; Kang, Byeongmin ; Hwang, Soon Hyoung ; Park, Jaeho ; Jeon, Sohee ; Kim, Hwi ; Jeong, Jun-Ho ; Park, Inkyu</creator><creatorcontrib>Ahn, Junseong ; Gu, Jimin ; Jeong, Yongrok ; Ha, Ji-Hwan ; Ko, Jiwoo ; Kang, Byeongmin ; Hwang, Soon Hyoung ; Park, Jaeho ; Jeon, Sohee ; Kim, Hwi ; Jeong, Jun-Ho ; Park, Inkyu</creatorcontrib><description>The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.3c00025</identifier><identifier>PMID: 36916819</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2023-03, Vol.17 (6), p.5935-5942</ispartof><rights>2023 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-7306fd8b9a39dfb174fa33d040876863fb62b91f6ea5e12fd5336e7365aa8e3f3</citedby><cites>FETCH-LOGICAL-a333t-7306fd8b9a39dfb174fa33d040876863fb62b91f6ea5e12fd5336e7365aa8e3f3</cites><orcidid>0000-0001-5761-7739 ; 0000-0002-0213-8076 ; 0000-0002-4090-5440 ; 0000-0003-0671-0225</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.3c00025$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.3c00025$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36916819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Gu, Jimin</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ha, Ji-Hwan</creatorcontrib><creatorcontrib>Ko, Jiwoo</creatorcontrib><creatorcontrib>Kang, Byeongmin</creatorcontrib><creatorcontrib>Hwang, Soon Hyoung</creatorcontrib><creatorcontrib>Park, Jaeho</creatorcontrib><creatorcontrib>Jeon, Sohee</creatorcontrib><creatorcontrib>Kim, Hwi</creatorcontrib><creatorcontrib>Jeong, Jun-Ho</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><title>Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLw0AQhRdRbK2evUmOgqTdzTSbxJtUq0JR0Arelk0y26Yku3U3Efz3bmnszdMMzPce8x4hl4yOGY3YRBZOS23GUFBKo_iIDFkGPKQp_zw-7DEbkDPnNpTGSZrwUzIAnjGesmxI5i9e3lqpnUIbGh0u15Veudtgbk0TvFWrqgxaE7y3FttiLfMag51iuzat0VUR3ON3VaA7JydK1g4v-jkiH_OH5ewpXLw-Ps_uFqEEgDZMgHJVpnkmIStVzpKp8oeSTqn_K-Wgch7lGVMcZYwsUmUMwDEBHkuZIigYkeu979aarw5dK5rKFVjXUqPpnIiS1OeCaJp4dLJHC2ucs6jE1laNtD-CUbErT_Tlib48r7jqzbu8wfLA_7XlgZs94JViYzqrfdZ_7X4B1o16Vw</recordid><startdate>20230328</startdate><enddate>20230328</enddate><creator>Ahn, Junseong</creator><creator>Gu, Jimin</creator><creator>Jeong, Yongrok</creator><creator>Ha, Ji-Hwan</creator><creator>Ko, Jiwoo</creator><creator>Kang, Byeongmin</creator><creator>Hwang, Soon Hyoung</creator><creator>Park, Jaeho</creator><creator>Jeon, Sohee</creator><creator>Kim, Hwi</creator><creator>Jeong, Jun-Ho</creator><creator>Park, Inkyu</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-0213-8076</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid><orcidid>https://orcid.org/0000-0003-0671-0225</orcidid></search><sort><creationdate>20230328</creationdate><title>Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices</title><author>Ahn, Junseong ; Gu, Jimin ; Jeong, Yongrok ; Ha, Ji-Hwan ; Ko, Jiwoo ; Kang, Byeongmin ; Hwang, Soon Hyoung ; Park, Jaeho ; Jeon, Sohee ; Kim, Hwi ; Jeong, Jun-Ho ; Park, Inkyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-7306fd8b9a39dfb174fa33d040876863fb62b91f6ea5e12fd5336e7365aa8e3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahn, Junseong</creatorcontrib><creatorcontrib>Gu, Jimin</creatorcontrib><creatorcontrib>Jeong, Yongrok</creatorcontrib><creatorcontrib>Ha, Ji-Hwan</creatorcontrib><creatorcontrib>Ko, Jiwoo</creatorcontrib><creatorcontrib>Kang, Byeongmin</creatorcontrib><creatorcontrib>Hwang, Soon Hyoung</creatorcontrib><creatorcontrib>Park, Jaeho</creatorcontrib><creatorcontrib>Jeon, Sohee</creatorcontrib><creatorcontrib>Kim, Hwi</creatorcontrib><creatorcontrib>Jeong, Jun-Ho</creatorcontrib><creatorcontrib>Park, Inkyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahn, Junseong</au><au>Gu, Jimin</au><au>Jeong, Yongrok</au><au>Ha, Ji-Hwan</au><au>Ko, Jiwoo</au><au>Kang, Byeongmin</au><au>Hwang, Soon Hyoung</au><au>Park, Jaeho</au><au>Jeon, Sohee</au><au>Kim, Hwi</au><au>Jeong, Jun-Ho</au><au>Park, Inkyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2023-03-28</date><risdate>2023</risdate><volume>17</volume><issue>6</issue><spage>5935</spage><epage>5942</epage><pages>5935-5942</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36916819</pmid><doi>10.1021/acsnano.3c00025</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5761-7739</orcidid><orcidid>https://orcid.org/0000-0002-0213-8076</orcidid><orcidid>https://orcid.org/0000-0002-4090-5440</orcidid><orcidid>https://orcid.org/0000-0003-0671-0225</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2023-03, Vol.17 (6), p.5935-5942
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_2786813247
source ACS Publications
title Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T09%3A47%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanotransfer-on-Things:%20From%20Rigid%20to%20Stretchable%20Nanophotonic%20Devices&rft.jtitle=ACS%20nano&rft.au=Ahn,%20Junseong&rft.date=2023-03-28&rft.volume=17&rft.issue=6&rft.spage=5935&rft.epage=5942&rft.pages=5935-5942&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.3c00025&rft_dat=%3Cproquest_cross%3E2786813247%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786813247&rft_id=info:pmid/36916819&rfr_iscdi=true