Nanotransfer-on-Things: From Rigid to Stretchable Nanophotonic Devices
The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal...
Gespeichert in:
Veröffentlicht in: | ACS nano 2023-03, Vol.17 (6), p.5935-5942 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The growing demand for nanophotonic devices has driven the advancement of nanotransfer printing (nTP) technology. Currently, the scope of nTP is limited to certain materials and substrates owing to the temperature, pressure, and chemical bonding requirements. In this study, we developed a universal nTP technique utilizing covalent bonding-based adhesives to improve the adhesion between the target material and substrate. Additionally, the technique employed plasma-based selective etching to weaken the adhesion between the mold and target material, thereby enabling the reliable modulation of the relative adhesion forces, regardless of the material or substrate. The technique was evaluated by printing four optical materials on nine substrates, including rigid, flexible, and stretchable substrates. Finally, its applicability was demonstrated by fabricating a ring hologram, a flexible plasmonic color filter, and extraordinary optical transmission-based strain sensors. The high accuracy and reliability of the proposed nTP method were verified by the performance of nanophotonic devices that closely matched numerical simulation results. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.3c00025 |