Eudragit-coated chitosan-tripterygium glycoside conjugate microspheres alleviate DSS-induced experimental colitis by inhibiting the TLR4/NF-κB signaling pathway
Tripterygium glycoside (TG) is a fat-soluble extract of Tripterygium wilfordii, with anti-inflammatory properties associated with TLR signaling pathways. This study constructed a targeted delivery system for experimental colitis, namely, eudragit (EuL)-coated chitosan (Ch)-TG conjugate microspheres...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2023-02, Vol.158, p.114194-114194, Article 114194 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tripterygium glycoside (TG) is a fat-soluble extract of Tripterygium wilfordii, with anti-inflammatory properties associated with TLR signaling pathways. This study constructed a targeted delivery system for experimental colitis, namely, eudragit (EuL)-coated chitosan (Ch)-TG conjugate microspheres (Ch-TG-MS/EuL), and evaluated its therapeutic efficacy and underlying mechanisms.
Ch-TG-MS was fabricated using emulsification cross-linking technique and then coated with EuL to create Ch-TG-MS/EuL. Drug release properties were assessed using a dialysis model. Additionally, the therapeutic benefits of Ch-TG-MS/EuL on colonic inflammation and its specific effect on TLR4/NF-κB signaling in intestinal mucosa were evaluated in vivo using a DSS-induced murine colitis model.
The Ch-TG-MS/EuL microspheres appeared as yellow powders with a slightly enlarged shape, rough surface, and adhesions. The Ch-TG-MS/EuL formulations also exhibited high entrapment efficiency and drug loading rate. High-performance liquid chromatography revealed that Ch-TG-MS/EuL exhibited a less intense peak than free TG, confirming that the drug is contained within the formulation. Free TG displayed explosive release within the first 5 h of administration, while Ch-TG-MS/EuL prevented the pre-mature release of TG and exhibited controllable release up to 24 h. In vivo, noticeable amelioration of intestinal mucosal tissue destruction was achieved with Ch-TG-MS/EuL compared to free TG. Additionally, immunohistochemical and western blotting results revealed that Ch-TG-MS/EuL markedly down-regulated the expression of intestinal mucosal TLR4, MyD88, and NF-κB p65. Hence, Ch-TG-MS/EuL may ameliorate the colon inflammatory response by inhibiting the hyperactivation of TLR4/NF-κB signaling.
Novel Ch-TG-MS/EuL preparation may represent a colonic delivery system for UC therapeutics by inhibiting TLR4/NF-κB hyperactivation.
All experimental data supporting the conclusions of this study are available from the corresponding author on reasonable request.
[Display omitted]
•Ch-TG-MS/EuL has a high entrapment efficiency and high drug loading rate.•TG is released in a slow and controlled manner from Ch-TG-MS/EuL over 24 h.•Ch-TG-MS/EuL via oral gavage reduces intestinal mucosal tissue destruction in mice.•Ch-TG-MS/EuL may improve colonic inflammation via inhibition of TLR4/NFκB signaling. |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2022.114194 |