Effects of laser sintering processing parameters on the microstructure and densification of iron powder

The densification behavior and the attendant microstructural features of iron powder processed by direct laser sintering were investigated. The effects of processing parameters such as laser power, scan rate, scan line spacing, thickness of layer, scanning geometry and sintering atmosphere were stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2003-10, Vol.359 (1), p.119-128
Hauptverfasser: Simchi, A, Pohl, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The densification behavior and the attendant microstructural features of iron powder processed by direct laser sintering were investigated. The effects of processing parameters such as laser power, scan rate, scan line spacing, thickness of layer, scanning geometry and sintering atmosphere were studied. A specific energy input ( ψ) was defined using the “energy conservation” rule to explore the effects of the processing condition on the density and the attendant microstructure of laser sintered iron. It was found that the sintered density increased sharply with increasing the specific energy input until a critical energy input had been reached ( ψ∼0.2 kJ mm −3). The microstructure consists of large pores (>0.5 mm) and elongated ferrite grains parallel to the building direction. The increase in the sintered density was followed with further increasing the specific energy, but at slower rate. Intensifying the energy input over 0.8 kJ mm −3 leads to the formation of horizontally elongated pores while the sintered density remains almost constant. The inter-agglomerates are fully dense and consist of elongated ferrite grains which are oriented parallel to the building direction. The iron powder was used as a model material so the outcomes are generic and can be applied to other material systems with congruent melting point or systems which melting/solidification approach is the mechanism feasible for the rapid bonding of metal powders in direct laser sintering.
ISSN:0921-5093
1873-4936
DOI:10.1016/S0921-5093(03)00341-1