Mean structure of the supercritical turbulent spiral in Taylor-Couette flow

The large-scale laminar/turbulent spiral patterns that appear in the linearly unstable regime of counter-rotating Taylor-Couette flow are investigated from a statistical perspective by means of direct numerical simulation. Unlike the vast majority of previous numerical studies, we analyse the flow i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2023-05, Vol.381 (2246), p.20220112-20220112
Hauptverfasser: Wang, B, Mellibovsky, F, Ayats, R, Deguchi, K, Meseguer, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The large-scale laminar/turbulent spiral patterns that appear in the linearly unstable regime of counter-rotating Taylor-Couette flow are investigated from a statistical perspective by means of direct numerical simulation. Unlike the vast majority of previous numerical studies, we analyse the flow in periodic parallelogram-annular domains, following a coordinate change that aligns one of the parallelogram sides with the spiral pattern. The domain size, shape and spatial resolution have been varied and the results compared with those in a sufficiently large computational orthogonal domain with natural axial and azimuthal periodicity. We find that a minimal parallelogram of the right tilt significantly reduces the computational cost without notably compromising the statistical properties of the supercritical turbulent spiral. Its mean structure, obtained from extremely long time integrations in a co-rotating reference frame using the method of slices, bears remarkable similarity with the turbulent stripes observed in plane Couette flow, the centrifugal instability playing only a secondary role. This article is part of the theme issue 'Taylor-Couette and related flows on the centennial of Taylor's seminal paper (Part 2)'.
ISSN:1364-503X
1471-2962
DOI:10.1098/rsta.2022.0112