Direct Route to Thermodynamic Uncertainty Relations and Their Saturation

Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2023-02, Vol.130 (8), p.087101-087101, Article 087101
Hauptverfasser: Dieball, Cai, Godec, Aljaž
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Thermodynamic uncertainty relations (TURs) bound the dissipation in nonequilibrium systems from below by fluctuations of an observed current. Contrasting the elaborate techniques employed in existing proofs, we here prove TURs directly from the Langevin equation. This establishes the TUR as an inherent property of overdamped stochastic equations of motion. In addition, we extend the transient TUR to currents and densities with explicit time dependence. By including current-density correlations we, moreover, derive a new sharpened TUR for transient dynamics. Our arguably simplest and most direct proof, together with the new generalizations, allows us to systematically determine conditions under which the different TURs saturate and thus allows for a more accurate thermodynamic inference. Finally, we outline the direct proof also for Markov jump dynamics.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.130.087101