Design, synthesis, modeling studies and biological evaluation of pyrazole derivatives linked to oxime and nitrate moieties as nitric oxide donor selective COX-2 and aromatase inhibitors with dual anti-inflammatory and anti-neoplastic activities
[Display omitted] •Twelve pyrazole derivatives 10a-f and 11a-f were designed and synthesized.•10e-f and 11a-f showed good in vitro COX-2 selectivity.•10c, 11a and 11e are potent inhibitors on breast, ovarian and melanoma cell lines.•10c, 11a and 11e could be used as a lead compounds for developing n...
Gespeichert in:
Veröffentlicht in: | Bioorganic chemistry 2023-05, Vol.134, p.106428-106428, Article 106428 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Twelve pyrazole derivatives 10a-f and 11a-f were designed and synthesized.•10e-f and 11a-f showed good in vitro COX-2 selectivity.•10c, 11a and 11e are potent inhibitors on breast, ovarian and melanoma cell lines.•10c, 11a and 11e could be used as a lead compounds for developing new anti-inflammatory and anti-cancer agents.
Two new series of pyrazole derivatives 10a-f and 11a-f with selective COX-2 inhibition pharmacophore and oxime/nitrate moieties as NO donor moiety were designed, synthesized and tested for anti-inflammatory, cytotoxic activities and NO release. Compounds 10c, 11a, 11e were more selective for COX-2 isozyme (S.I. = 25.95, 22.52 and 21.54 respectively) in comparison to celecoxib (S.I. = 21.41). Regarding anti-cancer activity, all synthesized compounds were screened by the National Cancer Institute (NCI), Bethesda, USA for anticancer activity against 60 human cancer cell lines representing the following cancer types: leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancers. Compounds 10c, 11a, 11e were found to be the most potent inhibitors on breast, ovarian and melanoma cell lines (MCF-7, IGROV1 and SK-MEL-5), compound 11a causing 79 % inhibition in case of MCF-7, 78.80 % inhibition in case of SK-MEL-5 and unexpected cell growth −26.22 % inhibition in case of IGROV1 (IC50 = 3.12, 4.28, 4.13 μM respectively). On the other hand, compounds 10c and 11e showed lower inhibition on the same cell lines with IC50 = 3.58, 4.58, 4.28 μM respectively for 10c, IC50 = 3.43, 4.73, 4.43 μM respectively for 11e. Furthermore, DNA-flow cytometric analysis showed that compound 11a induces cell cycle arrest at G2/M phase leading to cell proliferation inhibition and apoptosis. Additionally, these derivatives examined against F180 fibroblasts to investigate their selectivity indexes. The pyrazole derivative with internal oxime 11a was the most potent compound against most used cell lines especially MCF-7, IGROV1 and SK-MEL-5 (IC50 = 3.12, 4.28, 4.13 μM respectively) with 4.82-fold selectivity towards MCF-7 than F180 fibroblasts. Moreover, oxime derivative 11a showed potent aromatase inhibitory activity (IC50 16.50 μM) when compared with reference compound letrozole (IC50 15.60 μM). All compounds 10a-f and 11a-f released NO in a slow rate (0.73–3.88 %) and the six derivatives 10c, 10e, 11a, 11b, 11c and 11e were the highest NO releasers (3.88, 2.15, 3.27, 2.27, 2.55 and 3.74 % respectively). Herein stru |
---|---|
ISSN: | 0045-2068 1090-2120 |
DOI: | 10.1016/j.bioorg.2023.106428 |