Room-Temperature, Ultrafast, and Aqueous-Phase Synthesis of Ultrasmall LaPO4:Ce3+, Tb3+ Nanoparticles with a Photoluminescence Quantum Yield of 74

LaPO4:Ce3+, Tb3+ nanoparticles with a particle size of 2.7 nm are prepared by a facile room-temperature ligand-assisted coprecipitation method in an aqueous solution. Short-chain butyric acid and butylamine are used as binary ligands and play a critically important role in the synthesis of highly lu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2023-03, Vol.62 (11), p.4727-4734
Hauptverfasser: Ni, Zhan, Liu, Mengxin, Li, Bo, Shi, Xinan, Cao, Qiulin, Pan, Daocheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:LaPO4:Ce3+, Tb3+ nanoparticles with a particle size of 2.7 nm are prepared by a facile room-temperature ligand-assisted coprecipitation method in an aqueous solution. Short-chain butyric acid and butylamine are used as binary ligands and play a critically important role in the synthesis of highly luminescent LaPO4:Ce3+, Tb3+ nanoparticles. The absolute photoluminescence quantum yield as high as 74% can be achieved for extremely small LaPO4:Ce3+, Tb3+ nanoparticles with an optimal composition of La0.4PO4:Ce0.1 3+, Tb0.5 3+, which is different from La0.4PO4:Ce0.45 3+, Tb0.15 3+ for bulk phosphor. The energy transfer from Ce3+ ions to Tb3+ ions is investigated in sub-3 nm LaPO4:Ce3+, Tb3+ nanoparticles, and Ce3+ ion emission is almost completely suppressed. This room-temperature, ultrafast, and aqueous-phase synthetic strategy is particularly suitable for the large-scale preparation of highly luminescent LaPO4:Ce3+, Tb3+ nanoparticles. LaPO4:Ce3+, Tb3+ nanoparticles (110 g) can be synthesized in one batch, which is perfectly suited to the needs of industrial production.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.3c00235