Effects of juvenile thermal preconditioning on the heat-shock, immune, and stress responses of rainbow trout upon a secondary thermal challenge

Higher water temperatures and pathogens are both significant factors that negatively affect the welfare of teleost fish. In aquaculture, compared to natural populations, these problems are especially exacerbated, as the animals have relatively limited mobility, and the higher density promotes faster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Comparative biochemistry and physiology. Part A, Molecular & integrative physiology Molecular & integrative physiology, 2023-06, Vol.280, p.111413-111413, Article 111413
Hauptverfasser: Guo, Huming, Whitehouse, Lindy, Danzmann, Roy, Dixon, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Higher water temperatures and pathogens are both significant factors that negatively affect the welfare of teleost fish. In aquaculture, compared to natural populations, these problems are especially exacerbated, as the animals have relatively limited mobility, and the higher density promotes faster spread of infectious diseases. Because of the potential harm these stressors can inflict, methods that can limit the damage of these stressors are particularly valuable. As a method of interest, early-life thermal preconditioning of animals demonstrated some potential for effective improvements in thermotolerance. However, the potential effects of the method on the immune system via the heat-stress model have not been explored. In this experiment, juvenile-stage thermal preconditioned rainbow trout (Oncorhynchus mykiss) were subjected to a secondary thermal challenge, animals were collected and sampled at the time of lost equilibrium. The effects of preconditioning on the general stress response was assessed by measuring the plasma cortisol levels. In addition, we also examined hsp70 and hsc70 mRNA levels in the spleen and gill tissues, as well as IL-1β, IL-6, TNF-α, IFN-1, β2m, and MH class I transcripts via qRT-PCR. No changes in CTmax were observed between the preconditioned and control cohorts upon the second challenge. IL-1β and IL-6 transcripts were generally upregulated with increased temperature of the secondary thermal challenge, whereas IFN-1 transcripts were upregulated in the spleen, but downregulated in the gills, along with MH class I. The juvenile thermal preconditioning produced a series of changes in transcript levels for IL-1β, TNF-α, IFN-1, and hsp70 but the dynamics of these differences were inconsistent. Finally, analysis of plasma cortisol levels presented significantly lower cortisol levels in the pre-conditioned animals compared to the non-pre-conditioned control cohort. [Display omitted] •Animals treated with thermal preconditioning displayed lower cortisol levels upon 2nd exposure.•Preconditioned cohorts demonstrated different expression of IL-1β in spleen tissue.•Thermal preconditioning treatment did not affect CTmax.
ISSN:1095-6433
1531-4332
DOI:10.1016/j.cbpa.2023.111413