A Dynamic Generalized Self-Consistent Model for Wave Propagation in Particulate Composites

Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclusions) undergo multiple scattering which results in a frequency-dependent velocity and attenuation of coherent wave. The aim of this study is to analyses multiple scattering of plane compressional and shear waves in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mechanics 2003-07, Vol.70 (4), p.575-582
1. Verfasser: Yang, R.-B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclusions) undergo multiple scattering which results in a frequency-dependent velocity and attenuation of coherent wave. The aim of this study is to analyses multiple scattering of plane compressional and shear waves in a composite containing randomly distributed spherical inclusions in a homogenous isotropic medium. To calculate effective wave numbers of ultrasonic waves propagating in the heterogeneous material, a generalized self-consistent multiple scattering model is used in this study. Numerical results for the effective phase velocity and attenuation of both P and SV waves are calculated for a wide range of frequencies and concentrations. The proposed dynamic generalized self-consistent model for particulate composites recovers both well-known static effective moduli in the static limit and the results at higher frequencies and concentrations agree well with published experimental data.
ISSN:0021-8936
1528-9036
DOI:10.1115/1.1576806