A Dynamic Generalized Self-Consistent Model for Wave Propagation in Particulate Composites
Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclusions) undergo multiple scattering which results in a frequency-dependent velocity and attenuation of coherent wave. The aim of this study is to analyses multiple scattering of plane compressional and shear waves in...
Gespeichert in:
Veröffentlicht in: | Journal of applied mechanics 2003-07, Vol.70 (4), p.575-582 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wave propagations in an inhomogeneous medium (e.g., voids, particles, defects, inclusions) undergo multiple scattering which results in a frequency-dependent velocity and attenuation of coherent wave. The aim of this study is to analyses multiple scattering of plane compressional and shear waves in a composite containing randomly distributed spherical inclusions in a homogenous isotropic medium. To calculate effective wave numbers of ultrasonic waves propagating in the heterogeneous material, a generalized self-consistent multiple scattering model is used in this study. Numerical results for the effective phase velocity and attenuation of both P and SV waves are calculated for a wide range of frequencies and concentrations. The proposed dynamic generalized self-consistent model for particulate composites recovers both well-known static effective moduli in the static limit and the results at higher frequencies and concentrations agree well with published experimental data. |
---|---|
ISSN: | 0021-8936 1528-9036 |
DOI: | 10.1115/1.1576806 |