Motional heterogeneity of polystyrene- block-polybutadiene: a spin probe study

Polystyrene- block-polybutadiene copolymers (SB) with 0.5 mass fraction of styrene were studied by electron spin resonance (ESR) of nitroxide spin probes. The influence of the block length ( M ̄ w =12,000, M ̄ w =48,000 and M ̄ w =83,000 ) and the solvation power of casting solvents on the motional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2003-12, Vol.44 (26), p.7875-7881
Hauptverfasser: Čulin, Jelena, Andreis, Mladen, Veksli, Zorica, Gallot, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polystyrene- block-polybutadiene copolymers (SB) with 0.5 mass fraction of styrene were studied by electron spin resonance (ESR) of nitroxide spin probes. The influence of the block length ( M ̄ w =12,000, M ̄ w =48,000 and M ̄ w =83,000 ) and the solvation power of casting solvents on the motional dynamics of spin probe were measured over a wide temperature range. Two nitroxide radicals as spin probes were selected: 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl benzoate (BzONO) and 2,2,6,6-tetramethyl-4-hydroxypiperidine-1-oxyl (Tempol). Irrespective of the spin probe used two ESR spectral components differing in their motional properties above the phase transition of polybutadiene blocks (PB) were observed. The fast component was assigned to spin probes located in polybutadiene-rich domains and the slow component to spin probes in polystyrene-rich domains. The range of two spectral components and the phase transition of the slow ESR component, T 5mT, depend on the block length. The influence of the interphase and accumulation of free volume in the interphase on the Tempol probe motion was investigated by changing copolymer morphology in the films casted from selective and nonselective solvents. The analysis of the motional heterogeneity from the ratio of the fast and slow motional component presents evidence that in the selective solvent for polystyrene (PS) blocks (2-butanone) the most irregular structure with a large interphase is formed. The difference in fast motion of spin probes indicates that the motional dynamic is related to the change of domain structure.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2003.10.023