Improving pattern recognition of electronic nose data with time-delay neural networks

An enhanced time-delay neural network (TDNN), using time series sensor response data, improved pattern recognition ability of an electronic nose (e-nose) in discriminating four different spices. TDNN was used for analysis of e-nose time series sensor data from 0 to 4 min, while two popular pattern r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2003-11, Vol.96 (1), p.385-389
Hauptverfasser: Zhang, Haoxian, Balaban, Murat Ö., Principe, José C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An enhanced time-delay neural network (TDNN), using time series sensor response data, improved pattern recognition ability of an electronic nose (e-nose) in discriminating four different spices. TDNN was used for analysis of e-nose time series sensor data from 0 to 4 min, while two popular pattern recognition methods, discriminant function analysis (DFA) and multilayer perceptron (MLP) trained by back-propagation, were used to analyze the “instantaneous” e-nose data obtained from sensor responses only at 4 min. The results showed that DFA and MLP correctly recognized 59.4 and 62.5% of the spices respectively while TDNN correctly recognized all (100%) spices.
ISSN:0925-4005
1873-3077
DOI:10.1016/S0925-4005(03)00574-4