MODELING OF DEHYDRATION AND DEHYDROGENATION IN PURE AND Ba-, Ca-, Sr- OR Y-MODIFIED ZIRCONIA NANOLAYER

New developments in the quantum chemistry methodology, aimed at partial incorporation of the periodicity within the cell model, make it possible to obtain new data concerning the electronic structure of surface of nanolayers zirconia and the dopants in it. The previous our work was dedicated to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogen Materials Science and Chemistry of Carbon Nanomaterials 2003-09, Vol.II. Mathematics, Physics and Chemistry - Volume 172, p.291-298
Hauptverfasser: Tokiy, N V, Konstantinova, T Ye, Savina, D L, Tokiy, V V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:New developments in the quantum chemistry methodology, aimed at partial incorporation of the periodicity within the cell model, make it possible to obtain new data concerning the electronic structure of surface of nanolayers zirconia and the dopants in it. The previous our work was dedicated to the cell simulation of the electronic structure of 26 impurity d-elements (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au) and activation energies of dehydrogenation of Y-stabilized zirconia nanolayers. The present paper is dedicated to the simulation of the electronic structure of hydroxyl and terminal water cover of zirconia nanolayer with Ba, Ca, Sr and Y cations, with using the tight-binding theory. Also present work is devoted to definition activation energies of dehydration, dehydroxylation and dehydrogenation in doped nanocrystalline zirconia. These problems are considered within the framework of the cell model and the band calculations. During simulation the impurity is placed in the substituting cation site.