Kinetics of formic acid dehydration on Pt electrodes by time-resolved ATR-SEIRAS
The potential dependence of the rate of dehydration of formic acid to adsorbed CO (COad) on Pt at pH 1 has been studied on a polycrystalline Pt surface by time-resolved surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) with simultaneous recording...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2023-03, Vol.158 (9), p.094705-094705 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The potential dependence of the rate of dehydration of formic acid to adsorbed CO (COad) on Pt at pH 1 has been studied on a polycrystalline Pt surface by time-resolved surface-enhanced infrared absorption spectroscopy in the attenuated total reflection mode (ATR-SEIRAS) with simultaneous recording of current transients after a potential step. A range of formic acid concentrations has been used to obtain a deeper insight into the mechanism of the reaction. The experiments have allowed us to confirm that the potential dependence of the rate of dehydration has a bell shape, going through a maximum around the potential of zero total charge (pztc) of the most active site. The analysis of the integrated intensity and frequency of the bands corresponding to COL and COB/M shows a progressive population of the active sites on the surface. The observed potential dependence of the rate of formation of COad is consistent with a mechanism in which the reversible electroadsorption of HCOOad is followed by its rate-determining reduction to COad. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0138791 |