Dynamical analysis of a class of Euclidean algorithms

We develop a general framework for the analysis of algorithms of a broad Euclidean type. The average-case complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2003-03, Vol.297 (1), p.447-486
1. Verfasser: VALLEE, Brigitte
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop a general framework for the analysis of algorithms of a broad Euclidean type. The average-case complexity of an algorithm is seen to be related to the analytic behaviour in the complex plane of the set of elementary transformations determined by the algorithm. The methods rely on properties of transfer operators suitably adapted from dynamical systems theory. As a consequence, we obtain precise average-case analyses of algorithms for evaluating the Jacobi symbol of computational number theory fame, thereby solving conjectures of Bach and Shallit. These methods also provide a unifying framework for the analysis of an entire class of gcd-like algorithms together with new results regarding the probable behaviour of their cost functions.
ISSN:0304-3975
1879-2294
DOI:10.1016/S0304-3975(02)00652-7