Modeling of Combustion in Gasoline Direct Injection Engines for the Optimization of Engine Management System Through Reduction of Three-Dimensional Models to (n × One-Dimensional) Models

Gasoline direct injection (GDI) spark ignition engines may be able to run over a wide range of operating conditions. The GDI process allows combustion with lean mixtures which may lead to improved fuel economy and emissions relative to homogeneous spark ignition (SI) engines. To satisfy the differen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids engineering 2003-05, Vol.125 (3), p.520-532
Hauptverfasser: Emery, P, Maroteaux, F, Sorine, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Gasoline direct injection (GDI) spark ignition engines may be able to run over a wide range of operating conditions. The GDI process allows combustion with lean mixtures which may lead to improved fuel economy and emissions relative to homogeneous spark ignition (SI) engines. To satisfy the different modes of operation, the tuning of GDI engines requires a large number of engine tests which are time-consuming and very expensive. To reduce the number of tests, a model with a very short computational time to simulate the engines in the whole operating range is needed; therefore the objective of this paper is to present a reduced model to analyze the combustion process in GDI engines, applied to a homogeneous stoichiometric mode. The objective of the model is to reproduce the same tendencies as those obtained by three-dimensional models, but with a reduced computational time. The one-dimensional model is obtained thanks to a reduction methodology based on the geometry of the combustion front computed with three-dimensional models of the KIVA-GSM code, a modified version of KIVA-II code including a CFM combustion model. The model is a set of n one-dimensional equations (i.e., for n rays), taking into account a thin flame front, described with the flamelet assumption. It includes a CFM combustion model and a (k,ε)-model including the mean air motions (swirl and tumble). The results of the one-dimensional model are compared to those obtained by the KIVA IIGSM under different engine conditions. The comparison shows that the one-dimensional model overestimates the maximum cylinder pressure, which has an insignificant effect on the net indicated work per cycle. The results obtained by the numerical simulations are close to those given by the three-dimensional model, with a much reduced computation time.
ISSN:0098-2202
1528-901X
DOI:10.1115/1.1570859