Structure and properties of flexible starch-based double network composite films induced by dopamine self-polymerization

Starch-based packaging materials are being developed to alleviate environmental pollution and greenhouse gas emissions associated with plastic-based ones. However, the high hydrophilicity and poor mechanical properties of pure-starch films limit their widespread application. In this study, dopamine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbohydrate polymers 2023-01, Vol.299, p.120106-120106, Article 120106
Hauptverfasser: Xu, Hao, Chen, Long, Xu, Zhenlin, McClements, David Julian, Cheng, Hao, Qiu, Chao, Long, Jie, Ji, Hangyan, Meng, Man, Jin, Zhengyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Starch-based packaging materials are being developed to alleviate environmental pollution and greenhouse gas emissions associated with plastic-based ones. However, the high hydrophilicity and poor mechanical properties of pure-starch films limit their widespread application. In this study, dopamine self-polymerization was used as a strategy to improve the performance of starch-based films. Spectroscopy analysis showed that strong hydrogen bonding occurred between polydopamine (PDA) and starch molecules within the composite films, which significantly altered their internal and surface microstructures. The composite films had a greater water contact angle (> 90°), which indicated that the incorporation of PDA reduced their hydrophilicity. Additionally, the elongation at break of the composite films was 11-fold higher than pure-starch films, indicating that PDA improved film flexibility, while the tensile strength decreased to some extent. The composite films also exhibited excellent UV-shielding performance. These high-performance films may have practical applications in food and other industries as biodegradable packaging materials. [Display omitted]
ISSN:0144-8617
1879-1344
DOI:10.1016/j.carbpol.2022.120106