Solvation Effects on Polarizability of Aromatic Fluids

Elucidating solvation effects on polarizability in condensed phases is important for the description of the optical and dielectric behavior of high-refractive-index molecular materials. We study these effects via the polarizability model combining electronic, solvation, and vibrational contributions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2023-03, Vol.127 (10), p.2237-2249
Hauptverfasser: Moorthi, Krzysztof, Maekawa, Shintaro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Elucidating solvation effects on polarizability in condensed phases is important for the description of the optical and dielectric behavior of high-refractive-index molecular materials. We study these effects via the polarizability model combining electronic, solvation, and vibrational contributions. The method is applied to well-characterized highly polarizable liquid precursors: benzene, naphthalene, and phenanthrene. We find that the solvation and vibrational terms are of opposite signs and cancel almost exactly for benzene, but for naphthalene and phenanthrene, a 2.5 and 5.0% decrease relative to the equilibrium electronic polarizability of the respective monomer, α1 e, is predicted, respectively. The increase in electronic polarizability affects interaction polarizability of all contacts, which is the main reason for the increasing importance of solvation contribution. The calculated refractive indices agree very well with experiment for all three systems.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.2c08520