Allograft inflammatory factor-1 released from the cerebral microglia affect several organs in the body

Allograft inflammatory factor-1 (AIF-1) is expressed in microglia. Unilateral common carotid artery occlusion (UCCAO) was conducted to elucidate mechanisms that regulate AIF-1 expression in C57BL/6 male mice. Immunohistochemical reactivity of microglia against anti-AIF-1 antibody was increased signi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular histology 2023-04, Vol.54 (2), p.147-156
Hauptverfasser: Fukasawa, Mai, Nishio, Kensuke, Oikawa, Daichi, Itou, Tomoka, Iinuma, Toshimitsu, Asano, Masatake
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Allograft inflammatory factor-1 (AIF-1) is expressed in microglia. Unilateral common carotid artery occlusion (UCCAO) was conducted to elucidate mechanisms that regulate AIF-1 expression in C57BL/6 male mice. Immunohistochemical reactivity of microglia against anti-AIF-1 antibody was increased significantly in the brain of this model. The increased AIF-1 production was further confirmed by ELISA using brain homogenate. Real-time PCR demonstrated that the increased AIF-1 production was regulated at the transcriptional level. Serum AIF-1 levels were further examined by ELISA and marked increase was observed on Day 1 of UCCAO. To examine the influence of AIF-1, immunohistochemical staining was performed and revealed that the immunoreactivity against anti-Iba-1 antibody was significantly increased in various organs. Among them, the accumulation of Iba-1 + cells were observed prominently in the spleen. Intraperitoneal injection of minocycline, a potent microglia inhibitor, reduced the number of Iba-1 + cells suggesting microglia activation-dependent accumulation. Based on these results, AIF-1 expression was further examined in the murine microglia cell line MG6. AIF-1 mRNA expression and secretion were up-regulated when the cells were cultured under hypoxic condition. Importantly, stimulation of the cells with recombinant AIF-1 induced the expression of AIF-1 mRNA. These results may suggest that increased AIF-1 production by microglia in cerebral ischemia regulate the AIF-1 mRNA expression at least in part by an autocrine manner.
ISSN:1567-2379
1567-2387
DOI:10.1007/s10735-023-10116-x