Effect of cold plasma treatment on polylactic acid and polylactic acid/poly (ethylene glycol) films developed as a drug delivery system for streptomycin sulfate

Polylactic acid (PLA) being a renewable polyester have extensively researched in the biomedical field due to its non-toxicity, high biocompatibility, and easy processing properties. However, low functionalization ability and hydrophobicity limit its applications and hence demands physical and chemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-04, Vol.235, p.123857-123857, Article 123857
Hauptverfasser: Rafique, Ammara, Bulbul, Y. Emre, Usman, Ali, Raza, Zulfiqar Ali, Oksuz, Aysegul Uygun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polylactic acid (PLA) being a renewable polyester have extensively researched in the biomedical field due to its non-toxicity, high biocompatibility, and easy processing properties. However, low functionalization ability and hydrophobicity limit its applications and hence demands physical and chemical modifications to overcome these limitations. Cold plasma treatment (CPT) is frequently used to improve the hydrophilic properties of PLA-based biomaterials. This provides an advantage to obtain a controlled drug release profile in drug delivery systems. The rapid drug release profile may be advantageous in some applications such as wound application. The main objective of this study is to determine the effects of CPT on PLA or PLA@polyethylene glycol (PLA@PEG) porous films fabricated by solution casting method for use as a drug delivery system with a rapid release profile. The physical, chemical, morphological and drug release properties of PLA and PLA@PEG films, such as surface topography, thickness, porosity, water contact angle (WCA), chemical structure, and streptomycin sulfate release properties, after CPT were systematically investigated. XRD, XPS and FTIR results showed that oxygen-containing functional groups were formed on the film surface with CPT without changing the bulk properties. Along with the changes in the surface morphology such as surface roughness and porosity, the new functional groups provide the films hydrophilic properties by reducing the water contact angle. The improved surface properties enabled the selected model drug, streptomycin sulfate, to exhibit a faster release profile with drug-released mechanism fitted by first order kinetic model. Considering all the results, the prepared films showed an enormous potential for future drug delivery applications, especially in wound application where rapid drug release profile is an advantage. [Display omitted]
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123857