Polypropylene microplastics aging under natural conditions in winter and summer and its effects on the sorption and desorption of nonylphenol

Plastics in the environment undergo various aging effects. Due to the changes in physical and chemical properties, the sorption behavior of aged microplastics (MPs) for pollutants differs from that of pristine MPs. In this paper, the most common disposable polypropylene (PP) rice box was used as the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental research 2023-05, Vol.225, p.115615-115615, Article 115615
Hauptverfasser: He, Shuiyuan, Sun, Siyang, Xue, Honghai, Kang, Chunli, Yu, Shuyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plastics in the environment undergo various aging effects. Due to the changes in physical and chemical properties, the sorption behavior of aged microplastics (MPs) for pollutants differs from that of pristine MPs. In this paper, the most common disposable polypropylene (PP) rice box was used as the source of MPs to study the sorption and desorption behavior of nonylphenol (NP) on pristine and naturally aged PPs in summer and winter. The results show that summer-aged PP has more obvious property changes than winter-aged PP. The equilibrium sorption amount of NP on PP is summer-aged PP (477.08 μg/g) > winter-aged PP (407.14 μg/g) > pristine PP (389.29 μg/g). The sorption mechanism includes the partition effect, van der Waals forces, hydrogen bonds and hydrophobic interaction, among which chemical sorption (hydrogen bonding) dominates the sorption; moreover, partition also plays an important role in this process. Aged MPs' more robust sorption capacity is attributed to the larger specific surface area, stronger polarity and more oxygen-containing functional groups on the surface that are conducive to forming hydrogen bonds with NP. Desorption of NP in the simulated intestinal fluid is significant owning to intestinal micelles' presence: summer-aged PP (300.52 μg/g) > winter-aged PP (291.08 μg/g) > pristine PP (287.12 μg/g). Hence, aged PP presents a more vital ecological risk. [Display omitted] •Naturally aged polypropylene microplastics can adsorb more nonylphenol.•The aging effect on polypropylene rice boxes in summer is stronger than in winter.•The adsorbed nonylphenol was largely desorbed in simulated intestinal fluid.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2023.115615