Flexible Organic–Inorganic Halide Perovskite-Based Diffusive Memristor for Artificial Nociceptors

With the current evolution in the artificial intelligence technology, more biomimetic functions are essential to execute increasingly complicated tasks and respond to challenging work environments. Therefore, an artificial nociceptor plays a significant role in the advancement of humanoid robots. Or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (10), p.13238-13248
Hauptverfasser: Patil, Harshada, Kim, Honggyun, Kadam, Kalyani D., Rehman, Shania, Patil, Supriya A., Aziz, Jamal, Dongale, Tukaram D., Ali Sheikh, Zulfqar, Khalid Rahmani, Mehr, Khan, Muhammad Farooq, Kim, Deok-kee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the current evolution in the artificial intelligence technology, more biomimetic functions are essential to execute increasingly complicated tasks and respond to challenging work environments. Therefore, an artificial nociceptor plays a significant role in the advancement of humanoid robots. Organic–inorganic halide perovskites (OHPs) have the potential to mimic the biological neurons due to their inherent ion migration. Herein, a versatile and reliable diffusive memristor built on an OHP is reported as an artificial nociceptor. This OHP diffusive memristor showed threshold switching properties with excellent uniformity, forming-free behavior, a high I ON/I OFF ratio (104), and bending endurance over >102 cycles. To emulate the biological nociceptor functionalities, four significant characteristics of the artificial nociceptor, such as threshold, no adaptation, relaxation, and sensitization, are demonstrated. Further, the feasibility of OHP nociceptors in artificial intelligence is being investigated by fabricating a thermoreceptor system. These findings suggest a prospective application of an OHP-based diffusive memristor in the future neuromorphic intelligence platform.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.2c16481