Room‐Temperature Intrinsic Ferromagnetic Chromium Tellurium Compounds with Thickness‐Tunable Magnetic Texture
2D ferromagnetic chromium tellurides exhibit intriguing spin configurations and high‐temperature intrinsic ferromagnetism, providing unprecedented opportunities to explore the fundamental spin physics and build spintronic devices. Here, a generic van der Waals epitaxial approach is developed to synt...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2023-05, Vol.35 (19), p.e2209346-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 2D ferromagnetic chromium tellurides exhibit intriguing spin configurations and high‐temperature intrinsic ferromagnetism, providing unprecedented opportunities to explore the fundamental spin physics and build spintronic devices. Here, a generic van der Waals epitaxial approach is developed to synthesize the 2D ternary chromium tellurium compounds with thicknesses down to mono‐, bi‐, tri‐, and few‐unit cells (UC). The Mn0.14Cr0.86Te evolves from intrinsic ferromagnetic behavior in bi‐UC, tri‐UC, and few‐UC to temperature‐induced ferrimagnetic behavior as the thickness increases, resulting in a sign reversal of the anomalous Hall resistance. Temperature‐ and thickness‐tunable labyrinthine‐domain ferromagnetic behaviors are derived from the dipolar interactions in Fe0.26Cr0.74Te and Co0.40Cr0.60Te. Furthermore, the dipolar‐interaction‐induced stripe domain and field‐induced domain wall (DW) motion velocity are studied, and multibit data storage is realized through an abundant DW state. The magnetic storage can function in neuromorphic computing tasks, and the pattern recognition accuracy can reach up to 97.93%, which is similar to the recognition accuracy of ideal software‐based training (98.28%). Room‐temperature ferromagnetic chromium tellurium compounds with intriguing spin configurations can significantly promote the exploration of the processing, sensing, and storage based on 2D magnetic systems.
A generic van der Waals epitaxial approach is demonstrated to synthesize the non‐van der Waals 2D ternary chromium tellurium compounds with thicknesses as low as mono‐UC. Intrinsic ferromagnetic behavior is observed in the bi‐UC, tri‐UC, and few‐UC nanosheets. Thickness‐dependent magnetic textures are studied and applied in neuromorphic computing tasks. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202209346 |