Toothed whales use distinct vocal registers for echolocation and communication

Echolocating toothed whales (odontocetes) capture fast-moving prey in dark marine environments, which critically depends on their ability to generate powerful, ultrasonic clicks. How their supposedly air-driven sound source can produce biosonar clicks at depths of >1000 meters, while also produci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2023-03, Vol.379 (6635), p.928-933
Hauptverfasser: Madsen, Peter T, Siebert, Ursula, Elemans, Coen P H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Echolocating toothed whales (odontocetes) capture fast-moving prey in dark marine environments, which critically depends on their ability to generate powerful, ultrasonic clicks. How their supposedly air-driven sound source can produce biosonar clicks at depths of >1000 meters, while also producing rich vocal repertoires to mediate complex social communication, remains unknown. We show that odontocetes possess a sound production system based on air driven through nasal passages that is functionally analogous to laryngeal and syringeal sound production. Tissue vibration in different registers produces distinct echolocation and communication signals across all major odontocete clades, and thus provides a physiological basis for classifying their vocal repertoires. The vocal fry register is used by species from porpoises to sperm whales for generating powerful, highly air-efficient echolocation clicks.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.adc9570