Light emission from silicon: Some perspectives and applications

Research on efficient light emission from silicon devices is moving toward leading-edge advances in components for nano-optoelectronics and related areas. A silicon laser is being eagerly sought and may be at hand soon. A key advantage is in the use of silicon-based materials and processing, thereby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2003-10, Vol.32 (10), p.1043-1051
Hauptverfasser: FIORY, A. T, RAVINDRA, N. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Research on efficient light emission from silicon devices is moving toward leading-edge advances in components for nano-optoelectronics and related areas. A silicon laser is being eagerly sought and may be at hand soon. A key advantage is in the use of silicon-based materials and processing, thereby using high yield and low-cost fabrication techniques. Anticipated applications include an optical emitter for integrated optical circuits, logic, memory, and interconnects; electro-optic isolators; massively parallel optical interconnects and cross connects for integrated circuit chips; lightwave components; highpower discrete and array emitters; and optoelectronic nanocell arrays for detecting biological and chemical agents. The new technical approaches resolve a basic issue with native interband electro-optical emission from bulk Si, which competes with nonradiative phonon- and defect-mediated pathways for electron-hole recombination. Some of the new ways to enhance optical emission efficiency in Si diode devices rely on carrier confinement, including defect and strain engineering in the bulk material. Others use Si nanocrystallites, nanowires, and alloying with Ge and crystal strain methods to achieve the carrier confinement required to boost radiative recombination efficiency. Another approach draws on the considerable progress that has been made in high-efficiency, solar-cell design and uses the reciprocity between photo- and light-emitting diodes. Important advances are also being made with silicon oxide materials containing optically active rare-earth impurities.
ISSN:0361-5235
1543-186X
DOI:10.1007/s11664-003-0087-1