Effects of PFOS and cyclophosphamide exposure on immune homeostasis in mice
Perfluorooctane sulfonic acid (PFOS) is member of a class of molecules with fluorinated carbon chains known as polyfluoroalkyls. PFOS have been used to produce a variety of industry and comsumer uses. However, a significant concern is that it accumulates in the environment, including in animals and...
Gespeichert in:
Veröffentlicht in: | Immunobiology (1979) 2023-05, Vol.228 (3), p.152356-152356, Article 152356 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Perfluorooctane sulfonic acid (PFOS) is member of a class of molecules with fluorinated carbon chains known as polyfluoroalkyls. PFOS have been used to produce a variety of industry and comsumer uses. However, a significant concern is that it accumulates in the environment, including in animals and humans, and that it is a potential immunosuppressant. Here we analyze immune homeostasis in mice following chronic exposure to PFOS at levels up to those historically found in PFOS manufacturing workers. Mice were exposed to 0.15, 1.5, 15, or 50 µg /kg of PFOS for 28 days, after which, B cells, T cells, and granulocytes from the bone marrow, liver, spleen, lymph nodes, and thymus were evaluated. We find that at these exposures, there was no effect of PFOS on major T- or B-cell populations, macrophages, dendritic cells, basophils, mast cells, eosinophils, neutrophils, serum antibodies or select serum cytokines. By contrast, mice exposed the known immunosuppressant cyclophosphamide, which was given at 40 mg/kg for four days, exhibited depletion of several granulocyte, T- and B-cell populations of the thymus, bone marrow, and spleen, as well as circulating IgM and IgE antibodies. These data indicate that exposures of up to 50 µg /kg of PFOS for 28 days does not affect immune homeostasis in mice. |
---|---|
ISSN: | 0171-2985 1878-3279 |
DOI: | 10.1016/j.imbio.2023.152356 |