MTORC2 is a physiological hydrophobic motif kinase of S6 Kinase 1
Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonst...
Gespeichert in:
Veröffentlicht in: | Biochimica et biophysica acta. Molecular cell research 2023-04, Vol.1870 (4), p.119449-119449, Article 119449 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.
•S6 kinase 1 phosphorylation at T412 site, in the hydrophobic motif, is critical for complete activation of the enzyme.•mTOR complexes 1 and 2 act in tandem to activate S6 Kinase 1.•MTORC2 phosphorylates S6K1 at T412 after its auto-inhibition is released by mTORC1-induced eIF4E, S6K1-TOS motif interaction.•A 19 amino-acid region in S6K1 interacts with mTORC2 regulatory subunit rictor for inducing phosphorylation at T412 site. |
---|---|
ISSN: | 0167-4889 1879-2596 |
DOI: | 10.1016/j.bbamcr.2023.119449 |