Folic acid-modified reverse micelle-lipid nanocapsules overcome intestinal barriers and improve the oral delivery of peptides
The oral absorption of exenatide, a type 2 diabetes medication, can be increased by employing lipid nanocapsules (LNC). To increase mucus permeability and exenatide intestinal absorption, reverse micelle lipid nanocapsules (RM-LNC) were prepared and their surface was modified with DSPE-PEG-FA. The R...
Gespeichert in:
Veröffentlicht in: | Drug delivery 2023-12, Vol.30 (1), p.2181744-2181744 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The oral absorption of exenatide, a type 2 diabetes medication, can be increased by employing lipid nanocapsules (LNC). To increase mucus permeability and exenatide intestinal absorption, reverse micelle lipid nanocapsules (RM-LNC) were prepared and their surface was modified with DSPE-PEG-FA. The RM-LNC with surface modification of DSPE-PEG-FA (FA-RM-LNC) were able to target enterocytes and reduce mucus aggregation in the intestine. Furthermore, in vitro absorption at different intestinal sites and flip-flop intestinal loop experiments revealed that LNCs with surface modification significantly increased their absorption efficiency in the small intestine. FA-RM-LNC delivers more drugs into Caco-2 cells via caveolin-, macrophagocytosis-, and lipid raft-mediated endocytosis. Additionally, the enhanced transport capacity of FA-RM-LNC was observed in a study of monolayer transport in Caco-2 cells. The oral administration of exenatide FA-RM-LNC resulted in a prolonged duration of hypoglycemia in diabetic mice and a relative bioavailability (BR) of up to 7.5% in rats. In conclusion, FA-RM-LNC can target enterocytes and has promising potential as a nanocarrier for the oral delivery of peptides. |
---|---|
ISSN: | 1071-7544 1521-0464 |
DOI: | 10.1080/10717544.2023.2181744 |