Ultralow-loss fusion splicing between antiresonant hollow-core fibers and antireflection-coated single-mode fibers with low return loss
The Fresnel reflection of a splice from the air-silica interface between a hollow-core fiber (HCF) and a solid-core conventional fiber will increase the splicing loss and also cause possible instability of transmission. Here, for the first time, we develop a novel approach to fusion splicing an anti...
Gespeichert in:
Veröffentlicht in: | Optics letters 2023-03, Vol.48 (5), p.1120-1123 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Fresnel reflection of a splice from the air-silica interface between a hollow-core fiber (HCF) and a solid-core conventional fiber will increase the splicing loss and also cause possible instability of transmission. Here, for the first time, we develop a novel approach to fusion splicing an antireflection-coated (AR-coated) conventional fiber and an antiresonant HCF, which was generally claimed to be impossible because of the heat-induced damage of the coating, and achieve state-of-the-art ultralow fusion splicing loss less than 0.3 dB and a low return loss less than -28 dB by optimizing the splicing procedures and parameters. Our new fusion splicing approach will benefit the wide application of HCFs in telecoms, laser technologies, gyroscopes, and fiber gas cells. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.481190 |