Colloidal-crystal-templated synthesis of ordered macroporous electrode materials for lithium secondary batteries
This paper presents a general method of preparing three-dimensionally ordered macroporous (3DOM) electrode materials, including both cathode materials (V2O5 and LiNiO2) and an anode material (SnO2). The method is based on templated precipitation of inorganic precursors within a colloidal crystal of...
Gespeichert in:
Veröffentlicht in: | Journal of the Electrochemical Society 2003-08, Vol.150 (8), p.1102-1107 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a general method of preparing three-dimensionally ordered macroporous (3DOM) electrode materials, including both cathode materials (V2O5 and LiNiO2) and an anode material (SnO2). The method is based on templated precipitation of inorganic precursors within a colloidal crystal of poly(methyl methacrylate) spheres and subsequent chemical conversion. 3DOM electrodes possess several features of interest in the design of novel battery materials, such as high accessible surface areas, continuous networks, and structural features on the nanometer scale. Optimal synthesis conditions and structural features of 3DOM electrode materials are described on the basis of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, and chemical analysis. |
---|---|
ISSN: | 0013-4651 1945-7111 |
DOI: | 10.1149/1.1590324 |