Phosphorus-Enhanced and Calcium-Retarded Transport of Ferrihydrite Colloid: Mechanism of Electrostatic Potential Changes Regulated via Adsorption Speciation

The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO4 3–) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-03, Vol.57 (10), p.4219-4230
Hauptverfasser: Ma, Jie, Li, Jinbo, Weng, Liping, Ouyang, Xiaoxue, Chen, Yali, Li, Yongtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transport of ferrihydrite colloid (FHC) through porous media is influenced by anions (e.g., PO4 3–) and cations (e.g., Ca2+) in the aqueous environment. This study investigated the cotransport of FHC with P and P/Ca in saturated sand columns. The results showed that P adsorption enhanced FHC transport, whereas Ca loaded onto P–FHC retarded FHC transport. Phosphate adsorption provided a negative potential on the FHC, while Ca added to P-FHC led to electrostatic screening, compression of the electric double layer, and formation of Ca5(PO4)3OH followed by heteroaggregation at pH ≥ 6.0. The monodentate and bidentate P surface complexes coexisted, and Ca mainly formed a ternary complex with bidentate P ((FeO)2PO2Ca). The unprotonation bidentate P at the Stern 1-plane had a considerable negative potential at the Van der Waals molecular surface. Extending the potential effect to the outer layer of FHC, the potential at the Stern 2-plane and zeta potential exhibited a corresponding change, resulting in a change in FHC mobility, which was validated by comparison of experimental results, DFT calculations, and CD-MUSIC models. Our results highlighted the influence of P and Ca on FHC transport and elucidated their interaction mechanisms based on quantum chemistry and colloidal chemical interface reactions.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c09670