Effect of Acute Ketone Monoester Ingestion on Cardiorespiratory Responses to Exercise and the Influence of Blood Acidosis
This study aimed to examine the effect of KE ingestion on exercise cardiac output ( Q˙ ) and the influence of blood acidosis. We hypothesized that KE versus placebo ingestion would increase Q ˙, and coingestion of the pH buffer bicarbonate would mitigate this effect. In a randomized, double-blind, c...
Gespeichert in:
Veröffentlicht in: | Medicine and science in sports and exercise 2023-07, Vol.55 (7), p.1286-1295 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study aimed to examine the effect of KE ingestion on exercise cardiac output ( Q˙ ) and the influence of blood acidosis. We hypothesized that KE versus placebo ingestion would increase Q ˙, and coingestion of the pH buffer bicarbonate would mitigate this effect.
In a randomized, double-blind, crossover manner, 15 endurance-trained adults (peak oxygen uptake (V̇O 2peak ), 60 ± 9 mL·kg -1 ·min -1 ) ingested either 0.2 g·kg -1 sodium bicarbonate or a salt placebo 60 min before exercise, and 0.6 g·kg -1 KE or a ketone-free placebo 30 min before exercise. Supplementation yielded three experimental conditions: basal ketone bodies and neutral pH (CON), hyperketonemia and blood acidosis (KE), and hyperketonemia and neutral pH (KE + BIC). Exercise involved 30 min of cycling at ventilatory threshold intensity, followed by determinations of V̇O 2peak and peak Q ˙.
Blood [β-hydroxybutyrate], a ketone body, was higher in KE (3.5 ± 0.1 mM) and KE + BIC (4.4 ± 0.2) versus CON (0.1 ± 0.0, P < 0.0001). Blood pH was lower in KE versus CON (7.30 ± 0.01 vs 7.34 ± 0.01, P < 0.001) and KE + BIC (7.35 ± 0.01, P < 0.001). Q ˙ during submaximal exercise was not different between conditions (CON: 18.2 ± 3.6, KE: 17.7 ± 3.7, KE + BIC: 18.1 ± 3.5 L·min -1 ; P = 0.4). HR was higher in KE (153 ± 9 bpm) and KE + BIC (154 ± 9) versus CON (150 ± 9, P < 0.02). V̇O 2peak ( P = 0.2) and peak Q ˙ ( P = 0.3) were not different between conditions, but peak workload was lower in KE (359 ± 61 W) and KE + BIC (363 ± 63) versus CON (375 ± 64, P < 0.02).
KE ingestion did not increase Q ˙ during submaximal exercise despite a modest elevation of HR. This response occurred independent of blood acidosis and was associated with a lower workload at V̇O 2peak . |
---|---|
ISSN: | 0195-9131 1530-0315 |
DOI: | 10.1249/MSS.0000000000003141 |