RBM10 Loss Promotes EGFR-Driven Lung Cancer and Confers Sensitivity to Spliceosome Inhibition

In lung adenocarcinoma (LUAD), loss-of-function mutations in the splicing factor RBM10 frequently co-occur with oncogenic EGFR mutations. A detailed understanding of the functional consequences and therapeutic impact of RBM10 loss in EGFR-mutant LUAD could help identify more effective treatment stra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2023-05, Vol.83 (9), p.1490-1502
Hauptverfasser: Bao, Yufang, Zhang, Sirui, Zhang, Xiaoyu, Pan, Yunjian, Yan, Yueren, Wang, Ning, Ren, Yunpeng, Zuo, Ji, Zong, Wei-Xing, Wang, Zefeng, Wang, Yongbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In lung adenocarcinoma (LUAD), loss-of-function mutations in the splicing factor RBM10 frequently co-occur with oncogenic EGFR mutations. A detailed understanding of the functional consequences and therapeutic impact of RBM10 loss in EGFR-mutant LUAD could help identify more effective treatment strategies. Here, analysis of LUAD data sets indicated that RBM10 mutations are mutually exclusive with mutations in the tumor suppressor gene TP53. In an EGFR-driven LUAD mouse model, lung-specific ablation of either Rbm10 or Trp53 similarly promoted tumor development, leading to overlapping gene expression changes enriched in cancer-related pathways. RBM10 loss induced key RNA splicing changes concordant in mice and LUAD patients. Importantly, RBM10 deficiency conferred high sensitivity to spliceosome inhibition in EGFR-mutated LUAD cells. Combined treatment with spliceosome inhibitor improved the therapeutic efficacy of EGFR tyrosine kinase inhibitor osimertinib and overcame drug resistance, especially in RBM10-deficient LUAD. Together, this study establishes RBM10 as a tumor suppressor akin to p53 and provides a therapeutic strategy of targeting the splicing machinery in EGFR-driven LUAD. Loss of the splicing factor RBM10 is mutually exclusive with p53 mutations, promotes tumorigenesis, and enhances the efficacy of spliceosome inhibition in EGFR-driven lung cancer.
ISSN:0008-5472
1538-7445
1538-7445
DOI:10.1158/0008-5472.CAN-22-1549