Increased daily temperature fluctuations exacerbate the toxicity of phenanthrene in Enchytraeus albidus (Enchytraeidae)

Temperature variability in soils is expected to increase due to the more frequent occurrence of heat waves, putting species under thermal stress. In addition, organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are released into the environment due to anthropogenic activities. Both st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2023-05, Vol.873, p.162403-162403, Article 162403
Hauptverfasser: Dai, Wencai, Slotsbo, Stine, Xie, Liyan, Wang, Yang, Damgaard, Christian, Holmstrup, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Temperature variability in soils is expected to increase due to the more frequent occurrence of heat waves, putting species under thermal stress. In addition, organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) are released into the environment due to anthropogenic activities. Both stressors negatively impact terrestrial organisms and may interact with each other. Here, we subjected the soil living enchytraeid, Enchytraeus albidus, to combined exposure to phenanthrene (PHE; 0, 10, 20, 40, and 80 mg kg−1 dry soil) and a range of temperature treatments (constant temperature (CT): 10, 15 and 20 °C; different mean temperature with the same daily temperature fluctuation (DTF-5): 10 ± 5, 15 ± 5 and 20 ± 5 °C; daily temperature fluctuation with the same mean, but different amplitudes (DTF-A): 20, 20 ± 2, 20 ± 5 and 20 ± 7 °C). We measured internal PHE concentration in adults and found that an increase in mean temperature significantly increased the internal PHE concentration. The production of juveniles was measured using a standardized test. We found a synergistic interaction between the temperature amplitude (DTF-A treatments) and PHE on the reproduction of E. albidus. The EC50 of reproduction decreased with increasing amplitude. These results show that the negative effects of PHE on E. albidus can be magnified if stressful temperatures are reached (although briefly) during diurnal fluctuations of soil temperature. Our results highlight the importance and inclusion of extreme thermal events in the risk assessment of pollutants. [Display omitted] •The bioaccumulation of PHE reflected the soil PHE concentration.•Higher mean temperature promoted the bioaccumulation of PHE.•Enchytraeus albidus' reproduction decreased with increasing soil PHE concentration.•The EC50 of PHE for reproduction decreased with increasing temperature amplitudes.•The toxicity of PHE was magnified under elevated temperature amplitudes.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2023.162403