Characterization and evaluation of an oral vaccine via nano-carrier for surface immunogenic protein (Sip) delivery against Streptococcus agalactiae infection

Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently need...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biological macromolecules 2023-04, Vol.235, p.123770-123770, Article 123770
Hauptverfasser: Zhu, Chunhua, Zhang, Na, Jing, Dingding, Liu, Xiaodong, Zeng, Zhanzhuang, Wang, Jingjing, Xiao, Fangnan, Zhang, Hong, Chi, Hongshu, Wan, Chunhe, Lin, Pingdong, Gong, Hui, Wu, Yunkun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Streptococcus agalactiae causes systemic disease in a variety of wild and farmed fish, resulting in high levels of morbidity and mortality, as well as serious economic losses to the Nile tilapia aquaculture industry. The development of economic and applicable oral vaccines is therefore urgently needed for the sustainable development of Nile tilapia aquaculture. In this study, mesoporous silica nanoparticles (MSNs) were fabricated using sol–gel synthesis technology, and the antigens of surface immunogenic protein (Sip) was loaded into MSNs to develop a nanovaccine MSNs-Sip@HP55. The results showed that the prepared nanovaccine exhibited pH-controlled release, which could survive in the simulated gastric environment (pH 1.5), and release antigens in the simulated intestinal environment at pH 7.4. The nanovaccine could induce innate and adaptive immune responses in Nile tilapia. When the challenge doses were 1.5 × 106, 1.18 × 106, and 0.88 × 106 CFU/mL, the relative protection rates in immunized Nile tilapia were 63.33 %, 64.23 %, and 76.31 %, respectively. Taken together, the nanovaccine exhibited a high antigen utilization rate and was easily administered orally via feeding, which could protect Nile tilapia against challenge with S. agalactiae in large-scale farms. Oral vaccine based on MSNs carriers is a potentially promising strategy for the development of fish vaccines. •The vaccine exhibited a high antigen bioavailability based on the MSNs nano-carrier.•The nanovaccine delivery system had the advantages of pH-controlled release of antigens and good biocompatibility.•The nanovaccine, administered orally via feeding, could protect Nile tilapia against challenge with S. agalactiae.•The nanovaccine could stimulate innate and adaptive immunity.
ISSN:0141-8130
1879-0003
DOI:10.1016/j.ijbiomac.2023.123770