The role of torsional stress in the development of subchondral insufficiency fracture of the femoral head: A finite element model analysis
Subchondral insufficiency fracture of the femoral head generally occurs without evidence of trauma or with a history of minor trauma. Insufficient bone quality is considered one cause; however, the detailed mechanism of fracture development at the subchondral area (SA) is not understood. The aim of...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic science : official journal of the Japanese Orthopaedic Association 2024-03, Vol.29 (2), p.574-584 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Subchondral insufficiency fracture of the femoral head generally occurs without evidence of trauma or with a history of minor trauma. Insufficient bone quality is considered one cause; however, the detailed mechanism of fracture development at the subchondral area (SA) is not understood. The aim of this study was to clarify the directions of force that cause subchondral fracture using finite element model analysis.
Two types of finite element models were generated from the CT data of femurs obtained from three individuals without osteoporosis (normal models) and another three with osteoporosis (osteoporosis models). Three directions of force, including compressive, shearing, and torsional, were applied to the femoral head. The distribution of von Mises stress (Mises stress) was evaluated at the SA, principal compressive trabeculae (PC), and principal tensile trabeculae.
Under compressive force, the mean Mises stress value was greatest at the PC in both the normal and osteoporosis models. Under shearing force, the mean Mises stress value tended to be greatest at the SA in the normal model and at the PC in the osteoporosis model. Under torsional force, the mean Mises stress value was greatest at the SA in both types of models.
The torsional force showed the greatest Mises stress at the SA in both the normal and osteoporosis models, suggesting the importance of torsion as a possible force responsible for subchondral insufficiency fracture development. |
---|---|
ISSN: | 0949-2658 1436-2023 |
DOI: | 10.1016/j.jos.2023.02.004 |