Visualization of droplets and aerosols in simulated dental treatments to clarify the effectiveness of oral suction devices
Purpose: The hazards of aerosols generated during dental treatments are poorly understood. This study aimed to establish visualization methods, discover conditions for droplets/aerosols generated in simulating dental treatments and identify the conditions for effective suction methods.Methods: The s...
Gespeichert in:
Veröffentlicht in: | Journal of Prosthodontic Research 2023, Vol.68(1), pp.85-91 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose: The hazards of aerosols generated during dental treatments are poorly understood. This study aimed to establish visualization methods, discover conditions for droplets/aerosols generated in simulating dental treatments and identify the conditions for effective suction methods.Methods: The spreading area was evaluated via image analysis of the droplets/aerosols generated by a dental air turbine on a mannequin using a light emitting diode (LED) light source and high-speed camera. The effects of different bur types and treatment sites, reduction effect of intra-oral suction (IOS) and extra-oral suction (EOS) devices, and effect of EOS installation conditions were evaluated.Results: Regarding the bur types, a bud-shaped bur on the air turbine generated the most droplets/aerosols compared with round-shaped, round end-tapered, or needle-tapered burs. Regarding the treatment site, the area of droplets/aerosols produced by an air turbine from the palatal plane of the anterior maxillary teeth was significantly higher. The generated droplet/aerosol area was reduced by 92.1% by using IOS alone and 97.8% by combining IOS and EOS. EOS most effectively aspirated droplets/aerosols when placed close (10 cm) to the mouth in the vertical direction (0°).Conclusions: The droplets/aerosols generated by an air turbine could be visualized using an LED light and a high-speed camera in simulating dental treatments. The bur shape and position of the dental air turbine considerably influenced droplet/aerosol diffusion. The combined use of IOS and EOS at a proper position (close and perpendicular to the mouth) facilitated effective diffusion prevention to protect the dental-care environment. |
---|---|
ISSN: | 1883-1958 2212-4632 1883-9207 |
DOI: | 10.2186/jpr.JPR_D_23_00013 |