Temperature-immune Fabry-Perot cavity sensor based on an opened hollow-core anti-resonant fiber
A new approach to conquer the thermal phase drift of an optical fiber Fabry-Perot interferometer (FPI) sensor is proposed and experimentally demonstrated. By employing a hollow-core anti-resonant fiber (HC-ARF) and optimizing the fusion splicing (includes mode field adaptation) between the lead-in s...
Gespeichert in:
Veröffentlicht in: | Optics express 2023-02, Vol.31 (4), p.5483-5491 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A new approach to conquer the thermal phase drift of an optical fiber Fabry-Perot interferometer (FPI) sensor is proposed and experimentally demonstrated. By employing a hollow-core anti-resonant fiber (HC-ARF) and optimizing the fusion splicing (includes mode field adaptation) between the lead-in single-mode fiber (SMF) and the HC-ARF, a high spectral resolution (λ/Δλ ≈ 3.8 × 10
) optical fiber air-cavity FPI sensor with a fringe visibility higher than 7 dB is constructed. To eliminate the thermal phase drift (i.e. temperature crosstalk) of the sensor that originates from the intrinsic thermal expansion effect of the silica material of the HC-ARF, the FPI air cavity is connected to the external environments, by which the effect of air expelling from the cavity with temperature increasing can well compensate the temperature-induced cavity elongation. As a result, the thermal phase drift of the FPI is reduced to zero at a temperature range of ∼ 80-110 °C and within the temperature range of 40-80 °C, the thermal phase drift is still halved compared with the sealed FPI cavity. The nearly zero thermal phase drift of a FPI at such a temperature range has never been achieved before, to our best knowledge. As a proof of concept, a temperature-immune fiber-optic strain sensor is demonstrated. This work offers a new and efficient approach to eliminate the thermal phase drift (i.e. temperature crosstalk) of a fiber-optic device, which may significantly improve the measurement accuracy and detection limit of fiber-optic FPI sensors. Furthermore, the principle and schema can be generalized to a wide variety of fiber-optic devices. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.480313 |