Experimental and finite element analysis of fracture criterion in general yielding fracture mechanics
Efforts made over the last three decades to understand the fracture behaviour of structural materials in elastic and elasto-plastic fracture mechanics are numerous, whereas investigations related to fracture behaviour of materials in thin sheets or general yielding fracture regimes are limited in nu...
Gespeichert in:
Veröffentlicht in: | Sadhana (Bangalore) 2002-12, Vol.27 (6), p.631-642 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Efforts made over the last three decades to understand the fracture behaviour of structural materials in elastic and elasto-plastic fracture mechanics are numerous, whereas investigations related to fracture behaviour of materials in thin sheets or general yielding fracture regimes are limited in number. Engineering simulative tests are being used to characterize formability and drawability of sheet metals. However, these tests do not assure consistency in quality of sheet metal products. The prevention of failure in stressed structural components currently requires fracture mechanics based design parameters like critical load, critical crack-tip opening displacement or fracture toughness. The present attempt would aim to fulfill this gap and generate more information thereby increased understanding on fracture behaviour of sheet metals. In the present investigation, using a recently developed technique for determining fracture criteria in sheet metals, results are generated on critical CTOD and fracture toughness. Finite element analysis was performed to support the results on various fracture parameters. The differences are within 1 to 4%. At the end it is concluded that magnitude of critical CTOD and/or critical load can be used as a fracture criterion for thin sheets. |
---|---|
ISSN: | 0256-2499 0973-7677 |
DOI: | 10.1007/BF02703355 |