Changes of Soil Dissolved Organic Matter and Its Relationship with Microbial Community along the Hailuogou Glacier Forefield Chronosequence

Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2023-03, Vol.57 (9), p.4027-4038
Hauptverfasser: Yu, Shiyang, Lv, Jitao, Jiang, Lu, Geng, Pengyu, Cao, Dong, Wang, Yawei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glacier-retreated areas are ideal areas to study soil biogeochemical processes during vegetation succession, because of the limited effect of other environmental and climatic factors. In this study, the changes of soil dissolved organic matter (DOM) and its relationship with microbial communities along the Hailuogou Glacier forefield chronosequence were investigated. Both microbial diversity and DOM molecular chemodiversity recovered rapidly at the initial stage, indicating the pioneering role of microorganisms in soil formation and development. The chemical stability of soil organic matter enhanced with vegetation succession due to the retaining of compounds with high oxidation state and aromaticity. The molecular composition of DOM affected microbial communities, while microorganisms tended to utilize labile components to form refractory components. This complex relationship network between microorganisms and DOM components played an important role in the development of soil organic matter as well as the formation of stable soil carbon pool in glacier-retreated areas.
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.2c08855